

Life Cycle Assessment
A product-oriented method
for sustainability analysis

UNEP LCA Training Kit
Module l – Carbon Footprint

Contents

- What is a carbon footprint?
- Why is carbon footprint useful?
- Calculating carbon footprint
- Evolving standards

What is a carbon footprint?

- A Carbon footprint is the result of life cycle thinking applied to one impact category: Global Warming (Climate Change)
- It is not a true LCA because it only models one impact category.
- Carbon footprint supports lifecycle thinking.

What is a carbon footprint?

Carbon footprint impact units are **kg CO₂ equivalents** or global warming potential (**GWP**).

Species	Chemical formula	GWP ¹⁰⁰
Carbon dioxide	CO^2	1
Methane	CH ⁴	25
Nitrous oxide	N^2O	298
HFCs	-	124 - 14800
Sulphur hexafluoride	SF ⁶	22800
PFCs	-	7390 - 12200

Global warming potentials of some Greenhouse Gases (IPCC, 2007, 100 year time frame)

Why is carbon footprint useful?

- Global Climate Change is understood by many people as the most urgent ecological impact category
- It is a direct approach that uses absolute units
 - CP2 equivalents or GWP
- It is easily communicated.

Apply LCA procedures for carbon footprint:

- Define scope, goal and system boundaries
- Compile and analyse inventory data
- Perform Global Warming impact characterisation
- Normalisation and weighting are not usually performed
- Interpret results:

Check completeness, sensitivity and consistency Identify uncertainties

Example: carbon footprint/ lamp lifetime

Incandescent lamp

Fluorescent lamp

120000 kg CO2-eq.

40000 kg CO2-eq.

Example: carbon footprint/ 1000 lumen-hours

Incandescent lamp	Fluorescent lamp
160 kg CO2-eq./	4.7 kg CO2-eq./
1000 lumen-hour	1000 lumen-hour

The GHG Protocol

- A framework to inventory and calculate "company-level"
 GHG emissions
- It results from a partnership between the World Resource Council and the World Business Council for Sustainable Development
- Free guide for modeling the organisation carbon footprint: www.ghgprotocol.org/

Evolving standards

Currently no standard for carbon footprint of products

- Carbon Trust (UK) is developing a carbon foot-print methodology in coordination with manufacturers, LCA professionals and retailers.
- Uses 100 year global warming potential recommended by IPCC
- is being formalized into the British Publicly Available
 Specification (PAS 2050) to be approved in late 2008.
- ISO will evaluate it and revise it to become an international standard for calculation and reporting.

Related standards

ISO 14060 series address some carbon footprint aspects

- ISO 14064-1:2006 Greenhouse gases -- Part 1: Guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals
- ISO 14064-2:2006 Greenhouse gases -- Part 2: Guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements
- ISO 14064-3:2006 Greenhouse gases -- Part 3: Guidance for the validation and verification of greenhouse gas assertions
- ISO 14065-3:2007 Greenhouse gases -- Requirements for greenhouse gas validation and verification bodies for use in accreditation or other forms of recognition

You may want to review partsof this module on carbon footprint.

- What is a carbon footprint?
- Why is carbon footprint useful?
- Calculating carbon footprint
- Carbon footprint standards

You may also want to review any of the modules in this series on Sustianability Analysis.

Module	contents
а	LCA and decision support
b	Overview of LCA
С	Goal and scope definition
d	Inventory analysis
е	Impact assessment
f	LCA interpretation
g	Allocation in LCA
h	LCA mathematics
i	LCIA mathematics
j	Life cycle costing
k	Uncertainty in LCA
I	Carbon footprint